Axonal and transsynaptic (transneuronal) spread of Herpesvirus simiae (B virus) in experimentally infected mice.
نویسندگان
چکیده
In order to study the pathogenesis of B virus infection of the nervous system, newborn and young mice were inoculated by four different routes: 1. Intramuscular (i.m.) in the forelimb; 2. I.m. in the hindlimb; 3. Subcutaneous (s.c.) in the abdominal wall; 4. Intraperitoneal (i.p.). Spread of virus was followed by immunohistochemical demonstration of viral antigen in tissue sections of the peripheral and central nervous system. Three distinct patterns emerged: 1. After i.m. limb inoculations, virus progressed along the ipsilateral dorsal column, the bilateral spinothalamic and bilateral spinoreticular systems and along central autonomic pathways. 2. After s.c. inoculation, the dorsal column was spared, otherwise the spread was similar to that following i.m. inoculations. 3. After i.p. inoculation, virus spread in the spinal cord bilaterally, mainly along spinothalamic and central autonomic pathways. The peripheral motoneurons were conspicuously spared, even in the i.m. inoculation mode. In the brain stem, B virus antigen appeared bilaterally, at multiple sites. In the cerebrum, virus infected cells appeared first in the thalamus, hypothalamus and the motor cortex. The mode of spread from spinal levels was mainly orthograde along the ascending systems (dorsal columns, spinothalamic, spinoreticular tracts), but also retrograde along descending systems (pyramidal tract, central autonomic pathways). Oligosynaptic systems transmitted virus more quickly than the polysynaptic ones. In the involvement of various neuronal systems in virus spread, a certain selectivity, sparing the peripheral motoneuron and the cerebellar systems, could be assessed.
منابع مشابه
Pseudorabies virus Us9 directs axonal sorting of viral capsids.
Pseudorabies virus (PRV) mutants lacking the Us9 gene cannot spread from presynaptic to postsynaptic neurons in the rat visual system, although retrograde spread remains unaffected. We sought to recapitulate these findings in vitro using the isolator chamber system developed in our lab for analysis of the transneuronal spread of infection. The wild-type PRV Becker strain spreads efficiently to ...
متن کاملPseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system.
The present report presents a series of experiments using Bartha's K strain of pseudorabies virus (PRV) designed to test the specificity of this virus as a retrograde transneuronal marker in the sympathetic nervous system of rats. Three experiments were performed. First, an injection of PRV was made in the anterior chamber of the eye, followed 24 hr later by an injection of WGA-HRP. PRV infecte...
متن کاملVirion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus.
Transneuronal spread of pseudorabies virus (PRV) is a multistep process that requires several virally encoded proteins. Previous studies have shown that PRV glycoprotein B (gB), a component of the viral fusion machinery, is required for the transmission of infection to postsynaptic, second-order neurons. We sought to identify the gB-mediated step in viral transmission. We determined that gB is ...
متن کاملRetrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence.
The pseudorabies virus (PRV) gE gene encodes a multifunctional membrane protein found in infected cell membranes and in the virion envelope. Deletion of the gE gene results in marked attenuation of the virus in almost every animal species tested that is permissive for PRV. A common inference is that gE mutants are less virulent because they have reduced ability to spread from cell to cell; e.g....
متن کاملInfluence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation.
Pseudorabies virus (PrV) is a neurotropic alphaherpesvirus that, after intranasal infection of adult mice, enters peripheral neurons and propagates to the central nervous system. In recent years we have analyzed the contribution of virus-encoded glycoproteins to neuroinvasion and transneuronal spread (reviewed in T. C. Mettenleiter, Virus Res. 92:197-206, 2003). We now extend our studies to ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Histology and histopathology
دوره 7 1 شماره
صفحات -
تاریخ انتشار 1992